Правила проверки станков на точность

проверка точности фрезерных станков

Правила проверки станков на точность

Детали каждого станка при механической обработке изготовляют с неизбежными отклонениями, вследствие чего абсолютная точность работы станка невозможна. Неточность фрезерного станка вызывает неточность обработки деталей, изготовляемых фрезерованием.

Для обеспечения предусмотренных системой допусков и посадок отклонений от заданных размеров допустимые неточности фрезерных станков регламентируются.

В настоящее время в СССР действуют нормы точности, установленные для новых консольно-фрезерных станков общего назначения (ГОСТ 13—54), которые обеспечивают точность обработки по 2-му классу и нормы точности для станков повышенной точности (ГОСТ 154—41 и 155—41).

По мере износа и истирания деталей станка в процессе работы точность его понижается. Точность станка восстанавливается при его ремонте, поэтому для консольно-фрезерных станков общего назначения, выходящих из ремонта, устанавливаются те же нормы точности, что и для новых станков.

Инструменты и приборы, применяемые для проверки точности станков

Для определения точности станков применяют следующий измерительный инструмент: проверочные линейки с широкой рабочей поверхностью и лекальные линейки, проверочные угольники, щупы, уровни, индикаторы и контрольные оправки.

Один конец контрольной оправки представляет собой конус, соответствующий конусу в гнезде шпинделя проверяемого станка, а другой конец сделан цилиндрическим.

Контрольные оправки бывают диаметром 25, 40 и 60 мм при длине цилиндрической части соответственно 150, 300 и 500 мм.

Примеры проверки и нормы точности

Ниже дается несколько приемов проверки точности горизонтально- и вертикально-фрезерных станков, которые должен уметь выполнить каждый работающий на фрезерном станке, чтобы вовремя заметить неполадки станка, влияющие на качество и точность работы.
1. Проверка плоскостности рабочей поверхности стола.

На рабочую поверхность стола по различным направлениям кладут линейку поверочной гранью на две калиброванные плитки равной высоты. Щупом и плоскими плитками (концевые меры длины) проверяется просвет между нижней гранью линейки и поверхностью стола.

Допускаемое отклонение: 0,03 мм на длине 1000 мм в любых направлениях (допускается только вогнутость).

2. Проверка радиального биения оси конического отверстия шпинделя. Индикатор закрепляется на неподвижной части станка так, что его измерительный штифт касался цилиндрической поверхности концевой контрольной оправки, вставленной коническим хвостовиком в гнездо шпинделя.

Шпиндель приводится во вращение. Измерение производится у торца шпинделя и на расстоянии L от торца шпинделя.

Допускаемое отклонение: 0,010 мм у торца шпинделя; 0,020 мм на расстоянии L = 300 мм для станков первого, второго и третьего размеров.

3. Проверка радиального биения наружной цилиндрической посадочной поверхности переднего конца шпинделя.

Индикатор закрепляют на неподвижной части станка так, чтобы его измерительный штифт касался наружной поверхности переднего конца шпинделя, центрирующей насадные фрезы. Шпиндель приводится во вращение.

Допускаемое отклонение: для станков первого, второго размеров и выше 0,015 мм.

4. Проверка параллельности рабочей поверхности стола направлению его продольного перемещения. Индикатор закрепляется на неподвижной часта станка так, чтобы его измерительный штифт касался рабочей поверхности стола.

Стол перемещают по продольным направляющим на всю длину хода. Консоль застопорена на станине;, а салазки — на консоли.

Допускаемое отклонение на всей длине хода стола: до 300 мм — 0,015 мм, до 500 мм — 0,020 мм, до 1000 мм — 0,030 мм.

5. Проверка параллельности рабочей поверхности стола направлению его поперечного перемещения. Индикатор закрепляется на неподвижной части станка так, чтобы его измерительный штифт касался рабочей поверхности стола. Стол перемещают по поперечным направляющим на всю длину хода. Консоль застопорена на станине.

Допускаемое отклонение на всей длине хода стола: до 300 мм — 0,020 мм, до 500 мм — 0,030 мм (стол может иметь отклонение только к станине).
6. Проверка параллельности оси вращения шпинделя рабочей поверхности стола. В коническое гнездо шпинделя вставляется консольная контрольная оправка.

Измерение производится индикатором; основание стойки индикатора перемещается по рабочей поверхности стола, перпендикулярно оси оправки, таким образом, чтобы его измерительный штифт касался цилиндрической поверхности снизу или сверху оправки сначала у торца шпинделя, а потом на расстоянии L от него.

Каждое измерение производится по двум диаметрально противоположным сторонам оправки в данном соединении ее со шпинделем, т. е. после первого измерения шпиндель вместе с оправкой поворачивают на 180°. Погрешность каждого измерения определяется средней арифметической результатов обоих замеров, по диаметрально противоположным сторонам оправки.

Измерение производится в верхнем и нижнем положениях стола при застопоренных на станине консоли и салазках на консоли. Допускаемое отклонение: 0,03 мм на длине 300 мм для станков с шириной стола свыше 160 мм (свободный конец оправки может отклоняться только вниз).

7. Проверка параллельности направляющих хобота оси вращения шпинделя в вертикальной и горизонтальной плоскостях.

Индикатор закрепляют на специальной ползушке на хоботе так, чтобы его измерительный штифт касался цилиндрической части консольной контрольной оправки, вставленной в гнездо шпинделя. Ползушку с индикатором передвигают по направляющим хобота.

Измерение производится в вертикальной И горизонтальной ПЛОСКостях. В каждой из плоскостей измерение производится по двум диаметрально противоположным сторонам оправки, для чего после первого измерения шпиндель поворачивают на 180°.

Погрешность определяется средней арифметической результатов обоих измерений. Допускаемое отклонение: 0,025 мм на длине 300 мм для станков с шириной стола свыше 160 мм как в вертикальной, так и в горизонтальной плоскостях.

8. Проверка перпендикулярности оси вращения шпинделя к рабочей поверхности стола. На шпинделе крепят специальную коленчатую оправку с индикатором, измерительный штифт которого касается рабочей поверхности стола. При измерении шпиндель вместе с индикатором поворачивают на 360°. При проверке консоль застопорена на станине, а салазки — на консоли.

Каждое измерение производится в двух положениях индикатора, смещенных относительно шпинделя на 180° в продольной и поперечной плоскостях. Погрешность каждого измерения определяется средней арифметической результатов обоих замеров, т. е. замеров при диаметрально противоположных положениях индикатора относительно шпинделя.

Измерение производится в верхнем и нижнем положениях как стола, так и шпинделя (у станков с вертикальным перемещением шпиндельной бабки). У станков с поворотной шпиндельной бабкой она устанавливается в нулевое положение.

Допускаемое отклонение: для станков с шириной стола свыше 160 мм на диаметре 300 мм — 0,020 мм в продольной плоскости и 0,030 мм в поперечной (в поперечной плоскости допускается наклон только в сторону станины).

9. Проверка перпендикулярности рабочей поверхности стола к направлению вертикального перемещения консоли в продольной и поперечной плоскостях. Индикатор закрепляют на неподвижной части станка так, чтобы его измерительный штифт касался вертикальной рабочей грани угольника, установленного вдоль стола и поперек стола.

Консоль перемещают по направляющим станины.

Допускаемое отклонение: для станков с шириной стола свыше 160 мм на длине 300 мм — 0,020 мм вдоль продольной оси стола и 0,030 мм вдоль поперечной оси стола (в продольной плоскости отклонения могут быть в обе стороны, а в поперечной плоскости верхний конец угольника может отклоняться только в сторону станины).

предыдущая страницаоглавлениеследующая страница

Источник: http://tehinfor.ru/s_4/par71.html

Проверка точности токарных станков. Назначение проверки. Точность обрабатываемых деталей. Крупные токарные станки и станки повышенной точности. Испытание станка на холостом ходу. Действие механизма коробки подач. Проверка стайка на точность обработки

Правила проверки станков на точность

Назначение проверки. Точность обрабатываемых деталей во многом определяется точностью работы станка. Последняя в свою очередь зависит от многих условий: качества установки и выверки станка на фундаменте, степени износа его деталей, величины зазора в подвижных соединениях, прочности крепления и фиксации деталей и узлов, качества смазки и т. д.

Новые и капитально отремонтированные станки перед вводом в эксплуатацию подвергаются приемочным испытаниям, которые включают: 1) испытание станка на холостом ходу; 2) испытание станка под нагрузкой; 3) проверку станка на точность и чистоту обработки.

Такие же испытания рекомендуется проводить по мере ухудшения работы станка с целью предупреждения брака, своевременного восстановления станка и обеспечения безопасности работы на нем.

Рассмотрим основные положения, касающиеся испытания качества работы токарных станков.

Установка станка на фундамент. Мелкие и средние станки устанавливаются обычно на бетонный пол цеха и выверяются на горизонтальность клиньями. Проверка установки производится уровнем с точностью 0,02—0,04 мм на 1000 мм длины в продольном направлении и 0,03—0,05 мм на 1000 мм в поперечном.

Под выверенный станок заливают цементный раствор. При повышенных требованиях к виброустойчивости станок следует закрепить фундаментными болтами. Болты затягивают равномерно по истечении нескольких суток, необходимых для окончательного затвердевания цемента.

Крупные токарные станки и станки повышенной точности устанавливают на отдельном бетонном фундаменте.

В последнее время получил распространение способ установки металлорежущих станков на виброизолирующие резино-металлн- ческие опоры, значительно облегчающие монтаж и перепланировку оборудования в цехе.

Испытание станка на холостом ходу. Такое испытание выполняется для проверки действия механизмов станка без нагрузки, а именно: безотказного переключения коробки скоростей и подач, фартука, механизмов автоматического выключения и блокировки, системы смазки, степени нагревания подшипников, фиксации рукояток управления и др.

Работу коробки скоростей проверяют последовательным включением всех чисел оборотов шпинделя. После работы станка с наи

большей скоростью не менее одного часа температура подшипников шпинделя не должна превышать 60—70°.

Действие механизма коробки подач проверяют при наименьших, средних и наибольших подачах. По истечении такого лее времени температура подшипников его должна быть не выше

Все механизмы должны работать плавно, без толчков и вибраций; их пуск и реверсирование должны осуществляться легко, без значительных физических усилии и не сопровождаться рывками и ударами.

Тормоз должен обеспечивать быструю остановку станка при его выключении. Рукоятки управления должны надежно фиксироваться в установленных положениях.

Смазка должна поступать ко всем предусмотренным местам.

При проверке действия механизма фартука и суппорта необходимо обратить внимание на плавность и равномерность механических движений последнего, безотказность выключения подачи при соприкосновении с упором (если в фартуке предусмотрена предохранительная муфта), равномерность прилагаемого усилия при ручных перемещениях суппорта по всей длине движения, нормальную работу блокировочного устройства.

Проверке подлежит также работа электрооборудования. В переключателях, кнопочных станциях и других аппаратах не допускаются даже малейшие неисправности.

Испытание станка под нагрузкой. При таком испытании обрабатывают несколько деталей-образцов с постепенным увеличением режима резания до максимально допустимого по мощности. Допускается кратковременная перегрузка до 25%. Все механизмы должны работать нормально.

Особое внимание уделяют действию фрикционной муфты коробки скоростей, которан должна включаться плавно, бел ударов и не буксовать даже при значительной перегрузке.

Предохранительная муфта фартука должна надежно срабатывать при достижении расчетного допустимого усилия подачи.

Проверка стайка на точность и чистоту обработки. Точность нового и капитально отремонтированного станка должна удовлетворять нормам соответствующих стандартов.

Стандарты предусматривают два способа проверки: I) практическую — изготовлением контрольных образцов с последующей их проверкой универсальными измерительными инструментами; 2) геометрическую — путем проверки точности формы и расположения.узлов и деталей станка.

По первому способу выполняют обтачивание валика, закрепленного в патроне, диаметром не менее lU высоты центров и длиной три диаметра, но не более 500 мм. Обработанный валик провернется на овальность и конусообразность. При этом отклонение Должно быть не более 0,01 мм для станков с высотой центров до 200 мм.

Перпендикулярность хоа суппорта проверяют обтачиванием торцовой поверхности образца диаметром не менее высоты центров.

Плоскостность обработанного торца проверяют линейкой и набором щупов. Погрешность допускается только в сторону вогнутости — 0,02 мм при диаметре образца 300 мм.

Чистота поверхностей образцов при чистовом обтачивании должна находиться в пределах 6—7-го классов.

По второму способу проверяют геометрическую точность станка, которая включает: прямолинейность движения суппорта, параллельность оси шпинделя и направляющих задней бабки в направлении продольного перемещения суппорта, биение шпинделя, соосность его с пинолыо задней бабки и др. Такая проверка дает возможность выявить конкретные причины брака обрабатываемых деталей.

Методы выполнения некоторых основных проверок токарно- впнторезных станков нормальной точности и допустимые отклонения для них по ГОСТу 42—56

На суппорте (ближе к резцедержателю) параллельно направлению его перемещения устанавливается уровень

Суппорт перемещается в продол (лом направлении на всю длину хода. Замер производится не более чем через 500 мм на станках с длиной хода суппорта до 6 м„ При проверке резцедержатель сдвинут к оси центров станка

Погрешность определяется наибольшей ординатой траектории движения от прямой линии

При длине хода суппорта до 3 м проверка производится с помощью цилиндрической оправки, установленной в центрах, и индикатора

На суппорте устанавливается индикатор так, чтобы его мерн- тельный штифт касался боковой образующей оправкн. Показания индикатора по концам оправки должны быть одинаковыми, что достигается соответствующей установкой задней бабки

Вопросы для повторения

1.         Каким проверкам должен подвергаться станок перед вводом в эксплуатацию?

2.         Как устанавливаются и выверяются токарные станки на фундаменте? 3 Объясните назначение н выполнение испытаний стайка на холостом ходу

н под нагрузкой.

4.         Как выполняется практическая проверка точности работы станка?

5.         Объясните основные методы проверки геометрической точности токарного станка

Источник: http://www.bibliotekar.ru/tokar/131.htm

Проверка токарных станков на геометрическую и технологическую точность

Правила проверки станков на точность

Говоря о точности токарного станка имеется ввиду соответствие данных паспорта оборудования следующим параметрам:

  1. перемещение тех элементов, на которых располагается заготовка;
  2. расположение тех поверхностей, с помощью которых базируется инструмент или заготовка;
  3. форма базовых поверхностей.

После окончательной сборки и проверки на заводе, а также после ремонтов станки получают акт о приемке, и только после этого, вводятся в эксплуатацию.

Требования к точности указываются в паспорте станков.

Выполнение измерения для выявления погрешностей следует производить регулярно в соответствии с нормативами ГОСТ.

Скачать ГОСТ 8-82 «Станки металлорежущие. Общие требования к испытаниям на точность»

Скачать ГОСТ 18097-93  «Станки токарно-винторезные и токарные. Основные размеры. Нормы точности».

В процессе использования токарного оборудования происходит износ его деталей, т.к. при обработке изделий появляются силы, которые производят различные деформации.

При работе станок нагревается и под воздействием температуры образуются тепловые деформации. Все эти дефекты оказывают отрицательное влияние на качество обрабатываемых деталей.

И для того чтобы восстановить паспортные показатели станка периодически следует ремонтировать изношенные детали.

Качественное испытание токарных станков в соответствии с государственным стандартом во многом зависит от того, насколько правильно он установлен на испытательном стенде.

Установка на стенд должна происходить строго, соблюдая установочный чертеж. Самым распространенным методом, является установка на количество опор более 3-х.

Отметим, что все двигающиеся части проверяемого станка должны находится в средних положениях.

Геометрическая точность токарного станка характеризует качество изготовления деталей, поэтому установка заготовки должна осуществляться на геометрическую правильную поверхность.

Для определения степени износа нужно установить линейку поочередно на каждую из направляющих станины. После этого, щупом определяется расстояние между направляющими и контрольной линейкой. Допустимое значение такого износа согласно государственного стандарта не должно превышать 0,02 мм.

Не мало важным фактором является соответствие горизонтальности направляющих станины. Определить ее можно с помощью перемещения специального уровня вдоль поверхности направляющих, который покажет значение имеющегося отклонения.

Предельно допустимое отклонение по ГОСТ не может превышать значение 0,05 мм. А параллельность между направляющими станины для упорной (задней бабки) и каретки можно проверить с помощью специального измерительного индикатора.

Его необходимо закрепить на каретке с суппортом и с помощью перемещения каретки выявить величину отклонения.

Проверка параллельности направляющихПроверка горизонтальности направляющих станины

Также точность токарного станка поможет определить биение вращающегося шпинделя, в который крепится заготовка.

Обязательно при этом соблюдать параллельность между осью шпинделя и направляющими станины.

Во время проверки в отверстие вала устанавливают специальную контрольную оправку и на протяжении всей ее длины проверяют ее на биение.

Проверка параллельности оси шпинделя направляющим станины: а — индикатор закреплен в вертикальной плоскости; б — индикатор закреплен в горизонтальной плоскости

Осуществляя технологическую проверку на точность стоит обратить внимание также и на вращение шеек вращающегося вала. Биение при их вращении — не допустимо. В резцовой головке необходимо закрепить индикатор, затем уперев его штифт в шейке шпинделя произвести измерения. По ГОСТ значение не должно превышать 0,01 мм. Не допустимым будет при вращении шпинделя, чтобы он отклонялся от оси.

Проверка биения шпинделя: а — проверка биения шейки шпинделя; б — проверка осевого перемещения шпинделя; в — проверка биения переднего центра

Также одним из важных измерений при проверке токарного станка на точность является определение точности шага ходового винта. Величина отклонения в соответствии с ГОСТ определяется с помощью следующей методики:

  1. в центры передней и задней бабки устанавливают резьбовую оправку;
  2. на эту оправку накручивают гайку в форме цилиндра и имеющую паз;
  3. в паз этой цилиндрической гайки устанавливается шарик державки;
  4. индикатор, закрепленный в державке, упирается в торцевую часть цилиндрической гайки;
  5. токарный станок настраивается на шаг резьбы;
  6. индикатор определяет отклонения.

Проверка точности шага ходового винта

Основные погрешности формы обрабатываемых заготовок:

  1. непрямолинейность;
  2. конуснообразность;
  3. отсутствие параллельности;
  4. некруглость;
  5. неконцентричность.

Инструмент, применяемые при испытаниях:

  • контрольная линейка;
  • уровень;
  • щуп;
  • угольник;
  • измерительный индикатор;
  • резьбовая оправка;
  • контрольная оправка;
  • цилиндрическая гайка;
  • державка.

При выполнении измерений следует использовать только те инструменты, которые прошли метрологическую поверку с учтенной погрешностью.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://stankiexpert.ru/stanki/tokarnye/proverka-na-tochnost.html

Проверка токарного станка и заготовок на точность

Правила проверки станков на точность

При наладке и эксплуатации металлорежущих станков необходимо регулярно производить проверки их точности.

Под точностью станка подразумевается соответствие следующих параметров указанным в паспорте и стандарте:

  • Перемещение основных узлов, на которых размещается рабочий инструмент и заготовка.
  • Расположение поверхностей, при помощи которых выполняется базирование инструмента и заготовки. Расположение проверяется относительно друг друга и осей станка.
  • Форма базовых поверхностей.

Выделяют такие погрешности формы обрабатываемых заготовок:

  • Непрямолинейность. Образуется из-за неточности изготовления направляющих, их износа, ошибок при установке или нагреве. Другая причина образования — повышенная податливость заготовки, что приводит к ее деформации под усилием резки.
  • Некруглость. Получается по причине биения шпинделя, неправильной работы подшипников шпинделя, ошибок при копировании заготовки.
  • Конусообразность. Возникает, когда ось шпинделя не параллельна направляющим, что происходит под действием температурных деформаций, при смещении оси, недостаточной жесткости центров. Обработке без центров с вылетом заготовки превышающий соотношение длины и диаметра 3:1
  • Неконцентричность. Образуется при ошибках в копируемой заготовке либо при биении шпинделя.
  • Непараллельность. Возникает, когда направляющие станка имеют непрямолинейную форму или отклонения оси шпинделя от осей направляющих.

Инструменты для проверки точности станков

Для проверки оборудования используются следующие инструменты:

  • линейки;
  • угольники;
  • набор оправок;
  • измерительные головки;
  • уровни;
  • щупы;
  • индикаторы.
  • интерферометр

Линейками проверяют прямолинейность и плоскостность поверхностей. Оправки используются для определения биения вращающихся элементов, таких как шпиндель. Отверстие шпинделя проверяется оправкой, вставляемой в шпиндель. Оправка проворачивается несколько раз на половину круга, биение является разностью между максимальным и минимальным показателем.

Перпендикулярность проверяется при помощи угольника. Вспомогательным инструментом выступает щуп, которым определяют наличие и величину зазора между плоскостью и угольником. также возможно использование индикатора с магнитной стойкой

Уровни предназначаются для проверки точности установки оборудования на фундаменте в двух плоскостях. Точные замеры производят поверенные уровни с микрометрической шкалой.

Станки также могут проверяться приборами специального назначения — теодолитами, профилометрами и профилографами, интерферометрами.

Проверка элементов станка на точность

Проверка на точность токарного станка производится согласно требований ГОСТ:
Часть проверок приведена ниже:

  1. Радиальное биение шейки шпинделя. Измерительный штифт индикатора размещается так, чтобы он касался поверхности шейки и был перпендикулярен относительно образующей.
  2. Радиальное биение отверстия шпинделя. Для этого в шпинделе плотно размещается цилиндрическая оправка. Шпиндель вращается, и индикатором замеряется биение. Величина биения замеряется у шпинделя и в нескольких точках оправки.
  3. Параллельность оси шпинделя относительно продольного перемещения суппорта. Для проверки в шпинделе также закрепляют цилиндрическую оправку. Измерительный штифт индикатора должен касаться верхней поверхности оправки и быть перпендикулярным к ее образующей. Суппорт двигают вдоль направляющих станины на 300 мм. Измерения повторяют, установив штифт горизонтально, так, чтобы он касался боковой части оправки.
  4. Осевое биение шпинделя. Измерение предполагает закрепление короткой оправки в шпинделе. Измерительный штифт индикатора размещается вдоль оси шпинделя, так, чтобы его конец касался центра торца оправки. Шпиндель вращается, и замеряется биение.
  5. Торцевое биение буртика шпинделя. Измерительный штифт индикатора размещается так, чтобы он прикасался к торцу буртика у самого края. Шпиндель вращается, и снимаются результаты. Для получения точных данных необходимо провести измерения как минимум в двух точках. Итоговой погрешностью считается максимальное показание индикатора.
  6. Параллельность перемещения пиноли относительно продольного движения суппорта. Сначала производится проверка с пинолью, задвинутой в заднюю бабку и закрепленной в ней. Индикатор размещается на суппорте, а его измерительный штифт касается верхней поверхности пиноли. Суппорт перемещается, и замеряются данные. По аналогии с прошлой проверкой, измерения повторяются со штифтом, касающимся пиноли сбоку. Затем проводят такие же измерения, только пиноль вытягивается на половину из задней бабки.
  7. Параллельность отверстия пиноли относительно продольного движения суппорта. Эта проверка осуществляется так же, как и для отверстия шпинделя. В отверстии пиноли закрепляется оправка, и измерительный штифт касается ее сверху. Суппорт двигается вдоль станины. Окончательное значение погрешности является средним арифметическим трех замеров.
  8. Совпадение высоты осей вращения шпинделя и пиноли над продольными направляющими станины. Для измерения в центрах зажимают цилиндрическую оправку (скалку), а индикатор перемещают суппортом, определяя максимальное отклонение.
  9. Параллельность движения верхних салазок суппорта относительно оси шпинделя. В шпинделе закрепляется оправка, индикатор перемещается по верхним салазкам.

Источник: https://stankomach.com/o-kompanii/articles/proverka-stanka-na-tochnost.html

Правила проверки станков на точность

Правила проверки станков на точность

Проверка радиального биения оси конического отверстия шпинделя передней бабки (рис. 8.4). Индикатор устанавливается так, чтобы измерительный наконечник касался поверхности конического отверстия перпендикулярно к образующей конуса.

Реальные направляющие поверхности не представляют геометрически правильных плоскостей из-за погрешностей, вносимых в процесс их формообразования совокупностью технологических и других факторов, и только в большей или меньшей степени приближаются по своей форме к плоскостям.

Измерение прямолинейности направляющей поверхности имеет целью установление ее действительной формы с помощью координат, выраженных в линейных величинах и определяющих отклонения направляющей поверхности от исходной геометрической плоскости или следа пересечения поверхностей от геометрической прямой.

Паспорт станка является руководством в процессе ремонта и эксплуатации станка, при выборе типа станка для разработки технологического процесса, при назначении режимов обработки, при проектировании оснастки и т. д.

Паспорт токарного станка является документом, в котором содержатся основные технические данные и характеристика станка: наибольшие размеры обрабатываемых заготовок; частота вращения шпинделя; подача; наибольшее усилие, допускаемое механизмом подач; мощность электродвигателя главного привода; габаритные размеры и масса станка.

В паспорте приводятся основные параметры суппортов, шпинделя, резцовой головки, задней бабки и других сборочных единиц (узлов) станка.

Если остались вопросы, заполните форму ниже:

Нормы точности станка после среднего и капитального ремонтов должны соответствовать требованиям нормативно-технической документации, действовавшей на момент изготовления станка.
Не мало важным фактором является соответствие горизонтальности направляющих станины.

Определить ее можно с помощью перемещения специального уровня вдоль поверхности направляющих, который покажет значение имеющегося отклонения. Предельно допустимое отклонение по ГОСТ не может превышать значение 0,05 мм. А параллельность между направляющими станины для упорной (задней бабки) и каретки можно проверить с помощью специального измерительного индикатора.

Его необходимо закрепить на каретке с суппортом и с помощью перемещения каретки выявить величину отклонения.

В отверстие шпинделя плотно вставляют точную закаленную и шлифованную цилиндрическую оправку, а на суппорте устанавливают индикатор так, чтобы его измерительный штифт касался поверхности оправки. Суппорт перемещают вдоль станины.

Проверка 5. Радиальное биение центрирующей шейки шпинделя передней бабки

Проверка параллельности оси шпинделя передней бабки направляющим станины в вертикальной плоскости (рис. 8.5). Проверка производится с помощью цилиндрической оправки, вставленной в отверстие цанги, которая в свою очередь устанавливается в шпинделе. В каждой позиции производится два замера (с поворотом шпинделя на 180º).

При работе станок нагревается и под воздействием температуры образуются тепловые деформации. Все эти дефекты оказывают отрицательное влияние на качество обрабатываемых деталей. И для того чтобы восстановить паспортные показатели станка периодически следует ремонтировать изношенные детали.

Изменение определяет координату элементарной площадки относительно исходной прямой.

Измерение каждой данной площадки не зависит от измерения координат других площадок, за исключением крайних, по которым устанавливаются относительно друг друга измеряемый объект и исходная прямая.

Измерительный штифт индикатора должен касаться верхней поверхности оправки и быть перпендикулярным к ее образующей. Суппорт двигают вдоль направляющих станины на 300 мм.

Проверка 8. Торцовое биение опорного буртика шпинделя передней бабки

Проверка осевого биения шпинделя передней бабки (рис. 8.6). Ее выполняют с помощью индикатора, касающегося плоским измерительным наконечником шарика, помещенного в конусное отверстие шпинделя.

Могут быть приведены сведения по механике главного привода и подач: частота прямого и обратного вращения шпинделя или планшайбы! наибольший допустимый крутящий момент, соответствующий частоте вращения шпинделя или планшайбы; ступени рабочих подач суппортов и скорости установочных перемещений; эскизы важнейших деталей станка с указанием рабочего пространства и крайних положений перемещения сборочных единиц (узлов) и т. п.

Проверку станка на точность (жесткость) следует проводить после его сборки и испытаний на холостом ходу и в работе в соответствии с техническими условиями на станок.Настоящий стандарт распространяется на деревообрабатывающее оборудование: станки, машины, устройства (далее — станки) и устанавливает общие требования к испытаниям станков на точность и жесткость и методам их измерений.

В чертеже указываются необходимые размеры для изготовления фундамента, а также расположение станка в помещении с учетом свободного пространства для выступающих и движущихся частей станка.

При установке станка на бетонное основание размечают гнезда по размерам, соответствующим отверстиям крепления станины станка, а затем гнезда вырубают. После установки и выверки станка по уровню фундаментные болты заливают цементным раствором.

Установку станка в горизонтальной плоскости выверяют с помощью уровня, устанавливаемого в средней части суппорта параллельно и перпендикулярно оси центров. В любом положении каретки суппорта на направляющих станка отклонение уровня не должно превышать 0,04 мм на 1000 мм.

Проверка радиального биения центрирующей шейки шпинделя передней бабки (рис. 8.3). Стойку индикатора устанавливают на неподвижной части станка. Измерительный наконечник индикатора должен быть направлен нормально к образующей центрирующей шейки.

Индикатор устанавливают на поперечные салазки и подводят к одному из концов линейки приспособления. При медленном вращении шпинделя (от руки) замечают максимальное отклонение стрелки. С помощью винтов устраняют биение образующей линейки.

Этим устанавливают ее перпендикулярно оси вращения шпинделя с точностью 5 мкм и создают базу для проверки расположения различных узлов станка. Затем поперечные салазки перемещают к противоположному концу приспособления и засекают максимальное отклонение стрелки индикатора при медленном вращении шпинделя (от руки).

Прямолинейность движения определяет точность формы и взаимное расположение обрабатываемых на станке поверхностей, точность координатных и расчетных перемещений, точность установки переставляемых деталей, узлов и механизмов, взаимодействие механизмов, соединяющих подвижные и неподвижные части станка.

В свою очередь, точность прямолинейного движения определяется точностью изготовления и монтажа направляющих поверхностей базовой детали, т.

Для этого кинематометром контролируют согласованность движений (постоянство отношений скоростей) конечных звеньев винторезной или другой цепи.

Сначала производится проверка с пинолью, задвинутой в заднюю бабку и закрепленной в ней. Индикатор размещается на суппорте, а его измерительный штифт касается верхней поверхности пиноли. Суппорт перемещается, и замеряются данные. По аналогии с прошлой проверкой, измерения повторяются со штифтом, касающимся пиноли сбоку.

Одним из необходимых условий для обеспечения требуемой точности и долговечности работы станка является его правильная установка и крепление на фундаменте.

Тип фундамента зависит от нагрузки, передаваемой основанию станка, массы станка и сил инерции, действующих во время работы станка.

Фундаменты под металлорежущие станки бывают двух типов: первый — фундаменты, которые являются только основанием для станка, второй — фундаменты, которые жестко связаны со станком и придают станку дополнительную устойчивость и жесткость.

Токарные станки устанавливают, как правило, на фундаментах второго типа согласно установочному чертежу, который дается в руководстве по эксплуатации станка.
Испытанию на точность при приемосдаточных испытаниях должен подвергаться каждый изготовленный станок и каждый станок, прошедший средний и капитальный ремонты.

В паспорте описывается комплект приспособлений и принадлежностей, поставляемых заказчику со станком: сменные и запасные зубчатые колеса; инструмент для обслуживания станка; ремни для главного привода и других сборочных единиц; патроны; оправки; люнеты; центры упорные и вращающиеся; шкивы; вспомогательный инструмент и др.

В паспорте приводятся результаты испытания токарного станка на соответствие нормам точности и жесткости, которые показывают допускаемые и фактические значения точности перемещения сборочных единиц (узлов) станка, а также точности обработки и качества обработанной поверхности изделия — образца. Конкретные условия испытаний (периодичность, выборка и т.п.

) устанавливаются в технических условиях на станок или заменяющих их технических документах.

Для определения степени износа нужно установить линейку поочередно на каждую из направляющих станины. После этого, щупом определяется расстояние между направляющими и контрольной линейкой.

Допустимое значение такого износа согласно государственного стандарта не должно превышать 0,02 мм.

Масло не должно образовывать осадки, которые загрязняют маслопроводную систему и вызывают коррозию на деталях гидросистемы.

За исходную прямую линию принимаются: Сущность методов измерения линейных величин оптическим методом визирования, измерением по струне, гидростатическими методами заключается в том, что координаты элементарных площадок поверхности направляющей определяются непосредственным измерением.

Качественное испытание токарных станков в соответствии с государственным стандартом во многом зависит от того, насколько правильно он установлен на испытательном стенде. Установка на стенд должна происходить строго, соблюдая установочный чертеж.

Самым распространенным методом, является установка на количество опор более 3-х. Отметим, что все двигающиеся части проверяемого станка должны находится в средних положениях.Эта проверка осуществляется так же, как и для отверстия шпинделя.

В отверстии пиноли закрепляется оправка, и измерительный штифт касается ее сверху. Суппорт двигается вдоль станины.Проверка параллельности оси конического отверстия шпинделя задней бабки направляющим станины (рис. 8.7).

Проверка производится с помощью цилиндрической оправки, вставленной в отверстие цанги, которая в свою очередь устанавливается в коническое отверстие шпинделя задней бабки. Замеры производятся 3 раза с перестановкой оправки.

Источник: http://advokat-zinkin.ru/obshhestvo/6403-pravila-proverki-stankov-na-tochnost.html

Паспорт токарного станка. Испытание и проверка станка на геометрическую точность

Правила проверки станков на точность

Паспорт станка является руководством в процессе ремонта и эксплуатации станка, при выборе типа станка для разработки технологического процесса, при назначении режимов обработки, при проектировании оснастки и т. д.

Паспорт токарного станка является документом, в котором содержатся основные технические данные и характеристика станка: наибольшие размеры обрабатываемых заготовок; частота вращения шпинделя; подача; наибольшее усилие, допускаемое механизмом подач; мощность электродвигателя главного привода; габаритные размеры и масса станка.

В паспорте приводятся основные параметры суппортов, шпинделя, резцовой головки, задней бабки и других сборочных единиц (узлов) станка.

Могут быть приведены сведения по механике главного привода и подач: частота прямого и обратного вращения шпинделя или планшайбы! наибольший допустимый крутящий момент, соответствующий частоте вращения шпинделя или планшайбы; ступени рабочих подач суппортов и скорости установочных перемещений; эскизы важнейших деталей станка с указанием рабочего пространства и крайних положений перемещения сборочных единиц (узлов) и т. п.

В паспорте описывается комплект приспособлений и принадлежностей, поставляемых заказчику со станком: сменные и запасные зубчатые колеса; инструмент для обслуживания станка; ремни для главного привода и других сборочных единиц; патроны; оправки; люнеты; центры упорные и вращающиеся; шкивы; вспомогательный инструмент и др. В паспорте приводятся результаты испытания токарного станка на соответствие нормам точности и жесткости, которые показывают допускаемые и фактические значения точности перемещения сборочных единиц (узлов) станка, а также точности обработки и качества обработанной поверхности изделия — образца.

Одним из необходимых условий для обеспечения требуемой точности и долговечности работы станка является его правильная установка и крепление на фундаменте. Тип фундамента зависит от нагрузки, передаваемой основанию станка, массы станка и сил инерции, действующих во время работы станка.

Фундаменты под металлорежущие станки бывают двух типов: первый — фундаменты, которые являются только основанием для станка, второй — фундаменты, которые жестко связаны со станком и придают станку дополнительную устойчивость и жесткость.

Токарные станки устанавливают, как правило, на фундаментах второго типа согласно установочному чертежу, который дается в руководстве по эксплуатации станка.

В чертеже указываются необходимые размеры для изготовления фундамента, а также расположение станка в помещении с учетом свободного пространства для выступающих и движущихся частей станка.

При установке станка на бетонное основание размечают гнезда по размерам, соответствующим отверстиям крепления станины станка, а затем гнезда вырубают. После установки и выверки станка по уровню фундаментные болты заливают цементным раствором.

Установку станка в горизонтальной плоскости выверяют с помощью уровня, устанавливаемого в средней части суппорта параллельно и перпендикулярно оси центров. В любом положении каретки суппорта на направляющих станка отклонение уровня не должно превышать 0,04 мм на 1000 мм. Если фундаментные болты предварительно залиты в фундаменте, то выверку производят, когда они не затянуты. После установки и выверки производят внешний осмотр станка и испытывают его на холостом ходу, под нагрузкой, на точность и жесткость.

Испытание станка на холостом ходу. Привод главного движения последовательно проверяют на всех ступенях частоты вращения.

Затем проверяют взаимодействие всех механизмов станка; безотказность и своевременность, включения и выключения механизмов от различных управляющих устройств; работу органов управления; исправность системы подачи СОЖ и гидро- и пневмооборудования станка.

В процессе испытания на холостом ходу станок должен на всех режимах работать устойчиво, без стуков и сотрясений, вызывающих вибрации. Перемещение рабочих органов станка механическим или гидравлическим приводом должно происходить плавно, без скачков и заеданий.

При испытании станка на холостом ходу проверяются также его паспортные данные (частота вращения шпинделя, подача, перемещения кареток суппорта и др.). Фактические данные должны соответствовать значениям, указанным в паспорте.

Испытание станка под нагрузкой позволяет выявить качество его работы и проводится в условиях, близких к производственным. Испытание производят путем обработки образцов на таких режимах, при которых нагрузка не превышает номинальной мощности привода в течение основного времени испытания.

В процессе испытания допускается кратковременная перегрузка станка по мощности, но не более чем на 25%. Время испытания станка под полной нагрузкой должно быть не менее 0,5 ч.

При этом все механизмы и рабочие органы станка должны работать исправно; система подачи СОЖ должна работать безотказно; температура подшипников скольжения и качения не должна превышать 70-80 градусов С, механизмов подач 50 градусов С, масла в резервуаре 60 С.

Новые станки в процессе эксплуатации, а также после ремонта проверяют на геометрическую точность в ненагруженном состоянии, на точность обработанных деталей и на получаемую при этом шероховатость обработанной поверхности. Требования к точности изложены в руководстве по эксплуатации станка.

При проверке на точность станка проверяют прямолинейность продольного перемещения суппорта в горизонтальной плоскости; одновысотность оси вращения шпинделя передней бабки и оси отверстия пиноли задней бабки по отношению к направляющим станины в вертикальной плоскости; радиальное биение центрирующей поверхности шпинделя передней бабки под установку патрона; осевое биение шпинделя передней бабки и др.

Прямолинейность продольного перемещения суппорта в горизонтальной плоскости проверяют с помощью цилиндрической оправки, закрепленной в центрах передней и задней бабки, и индикатора, установленного на суппорте, рисунок ниже — а). Смещением задней бабки в поперечном направлении добиваются, чтобы показания индикатора на концах оправки были одинаковы или отличались не более чем на 0,02 мм на 1 м хода суппорта.

Одновысотность оси вращения шпинделя передней бабки и оси отверстия пиноли задней бабки по отношению к направляющим станины в вертикальной плоскости проверяют при удалении задней бабки от передней на 1/4 наибольшего расстояния между центрами, рисунок выше — б).

Проверку выполняют с помощью цилиндрических оправок, вставленных в отверстия шпинделя и пиноли задней бабки, и индикатора, установленного на суппорте.

Наибольшее показание индикатора на образующей оправки шпинделя определяют возвратно-поступательным поперечным перемещением суппорта в горизонтальной плоскости относительно линии центров. Не изменяя положения индикатора, таким же способом определяют его показания на образующей оправки задней бабки.

Разница в показаниях индикатоpa не должна превышать 0,06 мм у станков для обработки деталей с наибольшим диаметром 400 мм. Допускается только превышение оси отверстия пиноли над осью шпинделя передней бабки.

Радиальное биение центрирующей поверхности шпинделя передней бабки под патрон проверяют с помощью индикатора, рисунок выше — в). При этом измерительный стержень индикатора устанавливают перпендикулярно образующей центрирующей шейки шпинделя. Радиальное биение шейки вращающегося шпинделя для патрона с наибольшим диаметром обрабатываемой детали 400 мм не должно превышать 0,01 мм.

Осевое биение шпинделя передней бабки измеряют с помощью оправки, вставленной в отверстие шпинделя, и индикатора, установленного на станке при вращающемся шпинделе, рисунок ниже — г).

Измерительный стержень индикатора с плоским наконечником упирается в шарик, который установлен в центровое отверстие оправки.

Осевое биение шпинделя для установки деталей с наибольшим диаметром 400 мм не должно превышать 0,01 мм.

Радиальное биение конического отверстия шпинделя передней бабки проверяют с помощью оправки длиной L=300 мм, вставленной в отверстие шпинделя, и индикатором, установленным в резцедержатель станка при вращающемся шпинделе, рисунок выше — д). Для станков с наибольшим диаметром обрабатываемой детали 400 мм радиальное биение оправки у торца шпинделя (положение 1) не должно превышать 0,01 мм, а на расстоянии L=300 мм от торца шпинделя (положение 2) — 0,02 мм.

Параллельность оси вращения шпинделя передней бабки продольному перемещению суппорта проверяют с помощью оправки длиной L=300 мм, установленной в отверстие шпинделя, и индикатором, установленным на суппорте станка, рисунок выше — е). Измерение производят по образующей оправки в вертикальной (положение 3) и горизонтальной (положение 4) плоскостях.

При этом снимают показания индикатора по двум диаметрально расположенным образующим оправки (при повороте шпинделя на 180 градусов), перемещая суппорт с индикатором от торца шпинделя на расстояние L=300 мм. Затем определяют среднеарифметическое значение отклонений, измеренных по двум образующим (отдельно для горизонтальной и для вертикальной плоскостей).

Для станков с наибольшим диаметром обрабатываемой детали 400 мм допускаемая непараллельность оси шпинделя направлению продольного перемещения суппорта в вертикальной плоскости не должна превышать 0,03 мм (причем непараллельность должна быть направлена только вверх), а в горизонтальной плоскости — 0,012 мм (непараллельность должна быть направлена только в сторону суппорта).

Точность работы токарных станков проверяют при обработке образцов. На станках с наибольшим диаметром обрабатываемой детали 400 мм точность геометрической формы цилиндрической поверхности проверяют при обработке образцов длиной 200 мм.

Предварительно обработанный образец с тремя поясками, расположенными по концам и в середине образца, устанавливают в патрон или в центры станка и обрабатывают по наружной поверхности поясков.

Проверяют постоянство диаметра в любом поперечном сечении, при этом разность между измеренными максимальным и минимальным значениями не должна превышать 0,02 мм. Измерение производят пассиметром, микрометром или другими инструментами.

Плоскостность торцовой поверхности проверяют при обработке образцов диаметром d=200 мм, установленных в кулачки патрона. Торцовая поверхность образца может иметь кольцевые канавки (у периферии, в середине и в центре) и должна быть предварительно обработана. После проточки торцовой поверхности образец не снимают со станка.

Результаты обработки могут быть проверены индикатором, установленным на суппорте так, чтобы наконечник индикатора был перпендикулярен измеряемой поверхности. Измерение производят путем перемещения в поперечном направлении верхней части суппорта на длину, равную или больше D.

Отклонение, определяемое как половина наибольшей алгебраической разности показаний индикатора, не должно превышать 0,016 мм. Плоскостность торцовой поверхности можно также проверить, касаясь наконечником индикатора контрольной линейки, приложенной к обработанному торцу образца.

Линейку прикладывают в разных осевых сечениях проверяемой поверхности и определяют отклонение так же, как описано выше.

Точность нарезаемой резьбы проверяют на образце (диаметр которого примерно равен диаметру ходового винта станка), закрепленном в центры станка, при нарезании трапецеидальной резьбы длиной не более 500 мм с шагом, примерно равным шагу ходового винта станка.

При этом ходовой винт непосредственно соединяют со шпинделем через сменные зубчатые колеса с отключением механизма коробки подач. После чистовой обработки проверяют равномерность резьбы с помощью соответствующих приборов и методов проверки.

По результатам измерений определяют накопленную погрешность шага резьбы — разность между фактическим и заданным расстоянием между любыми одноименными (не соседними) профилями витка резьбы в осевом сечении по линии, параллельной оси винта.

Величина накопленной погрешности шага резьбы не должна превышать 0,04 мм на длине 300 мм.

Источник: http://turner.narod.ru/dir1/pasport.htm

Юрист Агапов
Добавить комментарий